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Analysis of the single-fiber fragmentation test

S. LEE∗, T. NGUYEN‡, J. CHIN, T.-J. CHUANG
National Institute of Standards and Technology, Gaithersburg, MD 20899 USA

An analysis of the single-fiber fragmentation test was investigated. An approximate
solution for the stress fields of a fiber embedded in a polymer matrix of different elastic
moduli was obtained by the Eshelby method. The fiber was modeled as a prolate spheroid.
The axial stress of the fiber increases with increasing aspect ratio and fiber-matrix shear
modulus ratio and decreases with increasing matrix and fiber Poisson’s ratios. Using this
analysis, the fracture stress of a single-fiber fragmentation specimen was derived. The
applied stress at fiber fracture decreases monotonically with increasing aspect ratio of the
fragmented fiber and increases with increasing fiber and matrix Poisson’s ratios. This
model is in qualitative agreement with published experimental data. C© 1998 Kluwer
Academic Publishers

1. Introduction
Fiber-reinforced polymeric composites have been
widely used in machines and structures because of
their combination of low weight and high strength. One
method commonly used for characterizing the interfa-
cial strength between a fiber and the surrounding matrix
is the single-fiber fragmentation test. In this technique,
a fiber is embedded in a polymer matrix coupon and a
tensile load is applied to the coupon. With increasing
load, the fiber fractures into shorter and shorter frag-
mentations until the shear stress transfer across the in-
terface is insufficient to cause further fracture of the
fiber. The interfacial shear stress is then estimated from
the fragment length distribution [1–8]. Because of the
random nature of fiber fracture, the critical fragmenta-
tion aspect ratio was widely analyzed using the Weibull
distribution [2–8]. Mai and co-workers [7, 8] used the
Weibull probability of failure to predict the average ten-
sile strength of a fiber. The Weibull probability was also
applied to carbon fibers [9].

The single-fiber fragmentation test was originally
proposed by Kelly and Tyson [1] for brittle fibers em-
bedded in a copper matrix. The applicability of this
technique for measuring the interfacial properties of
polymer/fiber composites has been verified experimen-
tally by Schultz and Nardin [10, 11]. They found that
the fiber/matrix shear strength obtained by the single-
fiber fragmentation test is linearly proportional to the
reversible work of adhesion between the two mate-
rials for a wide variety of polymer/fiber composites.
Since its inception, several studies have been performed
to analyze the stress distribution within and near the
fibers in polymer composites. Cox [12] used a shear
lag model to analyze the stress state near a broken fiber
end. Whitney and Drzal [13] proposed an analytical
model to calculate the stress distribution near a broken
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fiber based on the superposition of an exact far-field
solution and approximate transient solution. Liuet al.
[14] applied computer simulation to describe the frag-
mentation process of the fiber in a single-fiber com-
posite. Mai and co-workers [7, 8, 15] studied the fiber-
reinforced composites with regard to the matrix-fiber
interface conditions: full bonding, partial debonding,
and full frictional bonding. Gent and Wang [16] and
Liu et al. [17] addressed the effect of realistic prob-
lems, such as fiber cracking and interfacial debonding,
in their analyses.

Treatments of fibers as elastic inclusions have been
studied. Selvadurai and Rajapakse [18] considered a
rigid cylindrical inclusion embedded in an elastic half
space subjected to axial, lateral, and rotational loading.
Folias [19] calculated the stress fields in the neighbor-
hood of the intersection of a cylindrical inclusion and
a free surface under tension. Kasanoet al. [20] ob-
tained the stress fields in an infinite body having a rigid
cylindrical inclusion of finite length using Dougall’s
harmonic stress functions and the Fourier transform.
Rajapakse [21] solved the solution of an axially loaded
rigid inclusion bonded to a non-homogeneous elastic
half space. Oel and Frechette [22] calculated the stress
distribution in a thin disc having a cylindrical inclu-
sion. Argon [23] obtained an approximate solution for
the stresses around a slender elastic rod or platelet in
an infinite elastic solid under uniform strain at infin-
ity based on the Eshelby inclusion concept [24, 25].
Using the prolate spheroid to simulate a transverse
isotropic fiber based on the Eshelby method, Tandon
and Weng [26] investigated the effect of aspect ratio
on the effective elastic moduli of polymer compos-
ites. These results prompted us to study the single-fiber
fragmentation test based on the Eshelby approach. In
this study, the prolate spheroid was used to simulate a
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fiber in a polymer matrix. The fiber strength is related
to the fiber length based on the Weibull distribution.
The critical aspect ratio is related to the load trans-
fer from the matrix to the fiber when the fiber tensile
stress reaches the fiber strength. This study is part of the
ongoing research at the National Institute of Standards
and Technology on the application of high-performance
polymeric composites in civil engineering structures.

2. Stress Analysis
As an introduction to our model, consider a single fiber
of length 2c and diameter 2a embedded in a polymer
matrix subjected to an applied uniaxial tensionσ A. Both
fiber and matrix are assumed to be elastically isotropic
materials, and their shear moduli and Poisson’s ratios
areµ∗, ν∗ andµ, ν, respectively. The fiber/matrix in-
terface is assumed to be perfectly bonded. Because the
fiber length is greater than the diameter by a factor of at
least 10, the fiber can be treated as a prolate spheroid.
The prolate spheroid in the Cartesian coordinate system
x1, x2, andx3 is defined mathematically by

x2
1 + x2

2

a2
+ x2

3

c2
≤ 1 (1)

The aspect ratiok is defined asc/a and is greater than
unity for a prolate spheroid. According to the stress-
strain relation of the pure matrix, the uniform elastic
straineA

i j arising from the remotely applied stressσ A is

eA
i j =

−ν 0 0

0 −ν 0

0 0 1

 σ A

E
(2)

where E is the Young’s modulus of the matrix. We
analyze the stress fields of the single fiber embedded in
a polymer matrix using the Eshelby approach.

Eshelby [24, 25] solved the inclusion inhomogeneity
based on the equivalent inclusion method. The magni-
tude of the stress is uniform in the prolate spheroid and
decreases with increasing distance from the inclusion
for E∗> E. In this analysis, we are interested in the
maximum tensile stress, which is in the inclusion for
E∗> E, whereE∗ is the Young’s modulus of the fiber.
The internal stress of the inclusion is given as

σ I
i j = λ

(
eC

kk+ eA
kk− eT

kk

)
δi j + 2µ

(
eC

i j + eA
i j − eT

i j

)
= λ∗(eC

kk+ eA
kk

)
δi j + 2µ∗

(
eC

i j + eA
i j

)
(3)

whereλ,µ and λ∗, µ∗ are the Lam´e coefficients of
matrix and inclusion, respectively. It is noted that the
Einstein summation convention is used throughout this
paper. The parameter,δi j , is the Kronecker delta. The
constraint strain,eC

i j , is related to the transformation
strain or eigenstraineT

i j by

eC
i j = Si jkl e

T
kl (4)

in which the Eshelby tensorSi jkl is a function ofa
andc, and the elastic constants of the matrix. Because
of ellipsoid of revolution,eT

i j can be written as

eA
i j =

eT
11 0 0

0 eT
11 0

0 0 eT
33

 (5)

in which eT
11 andeT

33 are a function of the aspect ratio,
the elastic constants of both the matrix and the inclu-
sion, and the remote applied stressσ A. Substituting
Equation 4 into Equation 3, we obtain

eT
11 =

(1− 2ν)σ A

2µ
T11 (6)

eT
33 =

(1− 2ν)σ A

2µ
T33 (7)

whereT11, T33, and relevant parameters are given in Ap-
pendix I. The stresses in the inclusion can be obtained
from Equations 3, 6, and 7,

σ I
11 = σ A{[S1(k)− 1]T11+ [R1(k)− ν]T33} (8)

σ I
33 = σ A{2[P1(k)− ν]T11

+ [Q1(k)−1+ ν]T33+ 1} (9)

in which

P1(k) = ν(S1111+ S1122)+ (1− ν)S3311 (10a)

Q1(k) = 2νS1133+ (1− ν)S3333 (10b)

R1(k) = S1133+ νS3333 (10c)

S1(k) = S1111+ S1122+ 2νS3311 (10d)

whereSi jkl are expressed in Appendix I.
If the Poisson’s ratio of the fiber is the same as that

of the polymer matrix, the stresses in the inclusion can
be reduced to

σ I
11 = −mσ A[U11+ νU33] (11)

σ I
33 = −mσ A[2νU11+ (1− ν)U33] (12)

in which

U11 = {ν− (1−m)R1(k)}/U (13)

U33 = {(1−m)S1(k)− 1}/U (14)

U = 2[(1−m)P1(k)− ν][ν− (1−m)R1(k)]

+ [(1−m)Q1(k)− 1+ ν][(1−m)S1(k)− 1]

(15)

P1(k), Q1(k), R1(k), and S1(k) are defined in Equa-
tion 10, and the shear moduli ratiom is defined in
Equation A3g. Several special cases are presented as
follows. Whenν = 1/3, Equations 11 and 12 are the
same as the counterparts derived by Shibato and Ono
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(a)

(b)

(c)

Figure 1 (a)σ I
33/σ

A as a function ofk; (b) σ I
33/σ

A as a function ofm;
and (c)m as a function ofk. Solid and dashed lines representν = ν∗ =
0.25 and 0.5, respectively.

[27]. Whenm approaches unity (µ = µ∗), M = −1/3
(see Appendix II for the proof) and thereforeσ I

33 = σA

andσ I
11 = 0, respectively. Whenk approaches infinity,

σ I
33 becomesmσ A.
Fig. 1a presents the relation betweenσ I

33/σ
A andk

for various values ofm. This figure was obtained
by assuming that both matrix and fiber have the
same Poisson’s ratio. Solid and dashed lines repre-

sentν= ν∗ = 0.25 and 0.5, respectively. It is found that
σ I

33/σ
A increases rapidly with logk to reach a plateau

and approachesm. σ I
33/σ

A is equal to unity form= 1
regardless ofk because both spheroid and matrix have
the same physical properties. Comparing the solid and
dashed lines,σ I

33/σ
A is slightly greater for smaller val-

ues of Poisson’s ratio than for larger ones for a given
value of k. Fig. 1b plotsσ I

33/σ
A as a function ofm

with parameterk. The solid and dashed lines repre-
sent ν= ν∗ = 0.25 and 0.5, respectively.σ I

33/σ
A in-

creases withm for a given value ofk. In this case,
σ I

33/σ
A decreases slightly with increasing Poisson’s ra-

tio. Fig. 1c plotsm as a function ofk with parameter
σ I

33/σ
A. Again, the solid and dashed lines correspond

to ν= ν∗ = 0.25 and 0.5, respectively. The value of
m decreases rapidly with increasingk and approaches
σ I

33/σ
A ask approaches infinity.

The effect of the matrix Poisson’s ratio (ν∗ 6= ν) on
the relationship among axial stress, aspect ratio, and
ratio of shear modulus is shown in Fig. 2, where the
Poisson’s ratio of the fiber isν∗ = 0.25. Solid, dot-
ted, and dashed lines correspond toν= 0.25, 0.37, and
0.5, respectively. The curves ofσ I

33/σ
A versus logk are

given in Fig. 2a. For a given value ofk or m, σ I
33/σ

A

decreases with increasingν. For a givenm, the differ-
ence ofσ I

33/σ
A between two matrix Poisson’s ratios

increases with increasingk. When the aspect ratio ap-
proaches infinity, the axial stress becomes

σ I
33 =

m(1− ν∗ − 2νν∗)
(1+ ν)(1− 2ν∗)

σ A (16)

The effect of the matrix Poisson’s ratio on the curves
of σ I

33/σ
A versusm is shown in Fig. 2b. For a givenk,

the difference ofσ I
33/σ

A between two matrix Poisson’s
ratios increases with increasingm. It is possible that, for
a givenm, σ I

33/σ
A is larger for smallerk. The curves

of m versusk for different σ I
33/σ

A andν are plotted
in Fig. 2c. For a givenk andσ I

33/σ
A,m increases with

increasingν. If σ I
33/σ

A remains constant, the difference
of mbetween two matrix Poisson’s ratios increases with
decreasingk.

3. Fiber fragmentation
If the fiber is perfect, the theoretical cohesive strength
is approximately equal toE∗/π where E∗ is the
Young’s modulus of the fiber [28]. However, according
to Griffith [29], because the fiber has flaws its tensile
strength is much lower than the theoretical cohesive
strength of a fiber having no defects. The data of ten-
sile strength versus the diameter, 2a, of a glass fiber
having a 15.24 cm length given by Griffith [29] was fit
by the solid line in Fig. 3, using the least-square curve-
fitting method. The line is expressed by the following
equation,

σth = 0.1544+ 0.01727/(2a) (17)

where the units ofσth and 2a are GPa and mm, re-
spectively. In addition to the fiber diameter, the tensile
strength of the fiber is also a function of its length. For
example, data for the tensile strength of an AS4 fiber
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(a)

(b)

(c)

Figure 2 Effect of Poisson’s ratio of matrix for: (a)σ I
33/σ

A versus logk;
(b)σ I

33/σ
A versusm; and (c)m versusk. Solid, dotted, and dashed lines

correspond toν = 0.25, 0.37, and 0.5, respectively.

having a diameter of 6µm versus fiber length, as mea-
sured by Waterbury and Drzal [30], are plotted as the
dashed line in Fig. 3 and can be fit by the following
equation using the least-square fitting method,

logσth = −0.149 log(2c)+ 0.718 (18)

Figure 3 Effect of fiber diameter and length on fiber tensile strength.
Solid line: tensile strength versus diameter, according to the experimental
data obtained from [26]; dashed line: tensile strength versus gauge length,
according to the experimental data obtained from [30].

where the units ofσth and 2care in GPa and mm, respec-
tively. Equation 18 can be obtained by the Weibull prob-
ability of failure [7, 9]. Therefore, the tensile strength
of fiber is inversely proportional to its diameter and
length.

The fiber embedded in the polymer fractures when
the maximum normal stress reaches the local tensile
strength of the fiber. According to the above stress anal-
ysis, the maximum normal stress is the axial stress in
the fiber. The axial stress increases with the applied
stress, according to Equation 12. Therefore, the single
fiber in the matrix fractures according to the following
equation,

σ I
33 = σth(a, c) (19)

Using Equations 12 and 19, we obtain the applied stress
to fracture the single fiber,σ A

f , of a given size embedded
in the polymer matrix as

σ A
f = σth(a, c)/{2[P1(k)− ν]T11

+ [Q1(k)− 1+ ν]T33+ 1} (20)

Fig. 4 displays plots ofσ A
f versusk for different val-

ues ofν andm using Equation 20 whereσth(a, c) is
given by Equation 18 fora= 3 µm. The solid line
for ν= 0.35 is calculated using values ofν= 0.35,
ν∗ = 0.25, andm= 68.5, given by [30]. The other solid
lines are calculated using the different matrix Poisson’s
ratiosν= 0.25 and 0.5. It is found thatσ A

f decreases
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Figure 4 Applied stress at fiber fracture as a function of aspect ratio
k. Solid and dashed lines correspond tom= 68.5 and 40, respectively,
Poisson’s ratio of fiberν∗ = 0.25.

rapidly with increasingk. Further, for a givenk, σ A
f

increases with increasing matrix Poisson’s ratio. The
dashed line is for the casesm= 40 andν= 0.35. Com-
paring both solid and dashed lines for the same matrix
Poisson’s ratio, we find that, for a givenk, σ A

f increases
with decreasing ratio of shear modulus of fiber to
matrix.

According to Fig. 4, for a givenσth, σ
A
f increases

with decreasingk. It is implied that the fiber in the
polymer can fracture at any aspect ratio if the external
stress is large enough. However, the stresses in the fiber
as expressed in Equations 11 and 12 is valid only if the
applied load can be transferred from the matrix to the
fiber. When the aspect ratio decreases to a certain value,
σ A

f will no longer increase (or Equations 11 and 12
cannot be used anymore). This value is the so-called
critical aspect ratio. According to Fig. 4, ifσth/σ

A
f is

constant, the critical aspect ratio decreases with increas-
ing m. Netravaliet al. [4] used the same carbon fiber
embedded in different epoxies to study the single-fiber
fragmentation test. Values ofk and m used for Ne-
travali’s fiber/matrix systems are presented in Table I.
Because the fiber was the same for all tests,σth/σ

A
f

can be considered to be roughly constant. With the ex-
ception of the very flexible epoxy (see Table I), their

TABLE I Fiber fragmentation aspect ratio of carbon fiber in different
epoxies [4]

Strain rate Epoxy k m

0.004 mm−1 #1 92.68 171.6
#2 93.09 172.6
#3 88.64 182.9
#4 84.90 222.4
#5 71.34 410
#6 103.72 517

0.007 mm−1 #1 92.96 171.6
#2 93.27 172.6
#3 87.72 182.9
#4 83.13 222.4
#5 79.45 410
#6 117.02 517

critical aspect ratio decreased with increasingm. This
is in qualitative agreement with our prediction.

The effective interfacial shear strength,τc, is defined
as the local fracture stress at the breaking point divided
by twice the critical aspect ratio [1],

τc = σth(kc)

2kc
(21)

As stated in the Introduction, the fiber length for the
conventional single-fiber fragmentation test is long
enough to break into more than twenty pieces. The two
nearest fibers are able to interact with each other so
that the stress state in the system is changed. In addi-
tion, such a long fiber is possible to allow defects on
the interface. This complicated problem is very diffi-
cult to analyze the stress distribution, if not impossible.
Therefore, we propose an alternative method in this
paper to measure the critical aspect ratio and critical
interfacial shear strength. A series of fibers of different
lengths were prepared. If the fiber of a certain length
embedded in the polymer is not broken under the ten-
sile test, we increase the fiber length. The process is
repeated until the fiber embedded in the polymer is
broken. The minimum fiber length (or minimum aspect
ratio) corresponding to the minimum tensile stress after
the fiber broken is used to calculate the critical inter-
facial shear strength. Substitutingσ A by the minimum
tensile stress in Equation 12, we obtainσth(kc). Then,
substitutingkc by minimum aspect ratio in Equation 21,
we get the critical interfacial shear strength. It should be
noted that, in addition to neglecting the residual thermal
stress, the above analysis was based on the assumption
that both the fiber and matrix are isotropic materials.
Obviously, an analysis for anisotropic properties could
be performed but would be more complicated. Experi-
ments using fibers having different lengths and diame-
ters are being conducted to verify the model.

Netravali and co-workers [5, 6] measured the in-
terfacial shear strengths of different fibers embedded
in the same epoxy matrix using the acoustic emission
technique. Their results are given in Table II. The first
three rows are from [5] and last two rows are from [6].
Table II also includes the fiber strength,σ f , given by
commercial sources [31]. Based on these data, the ra-
tio of σth(kc) to the cohesive strength is close to 0.1
with the exception of the second row. The local frac-
ture stressσth(kc) is greater than the tensile strength
provided by the commercial source because, according
to the Weibull probability of failure,kc is smaller than
the gauge length commonly used for tensile testing.
Therefore, it is possible to use the following empirical
equation to predict the local tensile strength of a fiber
embedded in the polymer matrix,

σth = 0.1E∗/π (22)

4. Discussion
In this study, the prolate spheroid is used to simulate
a cylindrical fiber. Argon [23] assumed both fiber and
matrix have the same Poisson’s ratio and obtained the
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TABLE I I Mean aspect ratiokc, mean fragmentation lengthcc, interfacial shear strengthτc, Young’s modulus of fiberE∗, the local fracture stress
σth, and the ratio ofσth to E∗/π , r = σth/(E∗/π )

Fiber kc cc (mm) τc (MPa) σth (GPa) E∗ (GPa) r (GPa) σ f (GPa)

AS-4 graphite 62.04 0.46 60.26 7.48 210 0.11 2.5
S-2 glass 55.62 0.51 49.26 5.48 88 0.20 4.6
Kevlar 42.86 11.95 43.88 3.76 124 0.10 2.758
E-glass 42.93 0.97 27.50 2.36 77 0.10 2.1
E-glass 44.88 0.96 26.30 2.36 77 0.10 2.1

Note thatσ f was obtained from a commercial source [31].

axial stress at the end of fiber in matrix as

σ Ar
33 =

1+ αk

m+ αk
mσ A (23)

in which

α = 4(1− ν)/(3− 2ν − 4ν2) (24)

Kim et al. [15] considered a single fiber of radiusa
and length 2c embedded at the center of a coaxially
cylindrical shell of matrix with an outer radiusb. They
obtained the axial stress at the center of fiber as

σ k
33 =

1+ γ
m+ γ

[
1− 1

cosh(β2c)

]
(25)

in which

γ = a2/(b2− a2) (26a)

β2
2 =

(b2− a2)(1+m/γ )

(1+ ν)[b4 ln(b/a)− (b2− a2)/2− (b4− a4)]

(26b)

Fig. 5 displays a comparison of the axial stress obtained
by the present study with those provided by the liter-
ature form= 60. The solid, dotted, and dashed lines
are from our model, Argon’s [23], and Kimet al.’s
[15] models, respectively. Ask approaches infinity,

Figure 5 Comparison of axial stress for a fiber embedded in a polymer
matrix obtained by the present study and literature. Solid line: axial stress
on the fiber obtained by the present study; dotted line: axial stress at the
fiber end obtained by Argon [23]; dashed lines: axial stress at the fiber
center obtained by Kimet al., [15].

all curves are equal to 60 (=m). It is noted that the
stress obtained by Argon is lower than that obtained by
our study for large logk and the stress determined by
Kim et al. shifts to the right whenb/a increases. At
b/a= 100, the stress obtained by Kimet al. is the clos-
est to that obtained in this study. For fibers with an as-
pect ratiob/a< 10, as in the case of strong fiber/matrix
interface, the present treatment starts to deviate from the
true solutions. In such a case, this analysis cannot be
used to predict the interfacial properties. Moreover, the
true stress fields inside the fiber, as well as at the inter-
face, are not considered by the current treatment. They
may be solved by other methods, such as finite element
analysis.

It should be emphasized that most analyses of the
single-fiber fragmentation test are based on the Weibull
distribution of failure using the expression:

P = 1− exp

[
−
(

c

co

)(
σ − σu

σo

)β]
(27)

in which P is the cumulative probability of failure of
fiber of length 2c at stressσ, β is a shape parameter
(Weibull modulus),σo is a scaling parameter associated
with the fiber length 2co, andσu is a threshold stress
below which the failure probalility is zero. However,
Aslounet al. [32] found that the Weibull distribution did
not adequately describe the length dependence of the
fiber strength in the single-fiber composite test. Further,
the fracture stress,σ , at the fiber critical aspect ratio for
a single-fiber fragmentation specimen has been often
derived from [30, 33] to be

σ = σ AE∗/E (28)

whereσ A is the applied stress as defined earlier. Ac-
cording to our analysis, Equation 28 is valid when the
aspect ratio of the fiber,k, is infinity and the Poisson’s
ratios of both the fiber and the matrix are the same, so
thatm = E∗/E, with σ = mσ A (see Fig. 1a). That is,
Equation 28 generally over-estimates the fracture stress
at the critical aspect ratio of the fiber or at later stages
in a single-fiber fragmentation test.

5. Conclusions
A model for the single-fiber fragmentation test has
been proposed. The fiber is approximated by a pro-
late spheroid. Under the action of an applied stress,
normal stresses in the prolate spheroid embedded in a
matrix of different elastic moduli are obtained using the
Eshelby approach. The maximum normal stress is the
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axial stressσ I
33 in the spheroid. The axial stressσ I

33/σ
A

in the spheroid increases with the aspect ratio,k, of the
spheroid and the ratio of shear modulus of fiber to ma-
trix, m. The value ofk decreases with increasingm for
a fixedσ I

33/σ
A. The value ofσ I

33/σ
A decreases with in-

creasing Poisson’s ratios of matrix and fiber, for a given
m ork, butm increases with increasing Poisson’s ratios
of matrix and fiber for a givenk andσ I

33/σ
A. Using this

approach, the fracture stress of a single fiber/polymer
matrix composite was analyzed. The analysis was based
on the assumption that the tensile strength of the fiber
is inversely proportional to its diameter and length. The
applied stress at fiber fracture decreases monotonically
with increasing aspect ratio of the broken fiber. For a
given aspect ratio of broken fiber, the applied stress
at fiber fracture increases with Poisson’s ratios of fiber
and matrix but decreases with increasingm. The critical
aspect ratio is determined by the maximum aspect ra-
tio at which the load cannot be transferred from matrix
to fiber. The application of this model for determining
the shear strength of fiber/polymer matrix composites
is being investigated.

Appendix I
The parametersT11 andT33 are

T11 =
[
m− 1+ m(ν∗ − ν)

(1− 2ν∗)(1+ ν)

]
· ν − R(k,m)

2[P(k,m)− ν][ν − R(k,m)] + [S(k,m)− 1][Q(k,m)− 1+ ν]
(A1a)

T33 =
[
m− 1+ m(ν∗ − ν)

(1− 2ν∗)(1+ ν)

]
· S(k,m)− 1

2[P(k,m)− ν][ν − R(k,m)] + [S(k,m)− 1][Q(k,m)− 1+ ν]
(A1b)

in which

P(k,m) =
[
ν − mν∗(1− 2ν)

1− 2ν∗

]
(S1111+ S1122)+

[
1− ν − m(1− ν∗)(1− 2ν)

1− 2ν∗

]
S3311 (A2a)

Q(k,m) = 2

[
ν − mν∗(1− 2ν)

1− 2ν∗

]
S1133+

[
1− ν − m(1− ν∗)(1− ν)

1− 2ν∗

]
S3333 (A2b)

R(k,m) =
[
1− m(1− 2ν)

1− 2ν∗

]
S1133+

[
ν − mν∗(1− 2ν)

1− 2ν∗

]
S3333 (A2c)

S(k,m) =
[
1− m(1− 2ν)

1− 2ν∗

]
(S1111+ S1122)+ 2

[
ν − mν∗(1− 2ν)

1− 2ν∗

]
S3311 (A2d)

S1111= S2222= 3

8(1− ν)

[
1− 1+ 3M

2(k2− 1)

]
+ 1− 2ν

4(1− ν)
(1+ M) (A3a)

S1122= 1

8(1− ν)

[
1− 1+ 3M

2(k2− 1)

]
− 1− 2ν

4(1− ν)
(1+ M) (A3b)

S1133= S2233= 1

4(1− ν)

k2(1+ 3M)

k2− 1
− 1− 2ν

4(1− ν)
(1+ M) (A3c)

S3311= S3322= 1+ 3M

4(1− ν)(k2− 1)
+ (1− 2ν)M

2(1− ν)
(A3d)

S3333 = 1

2(1− ν)

[
1− k2(1+ 3M)

k2− 1

]
− (1− 2ν)M

2(1− ν)

(A3e)

M = 1

k2− 1
− k

(k2− 1)3/2
cosh−1(k) (A3f)

m = µ∗

µ
(A3g)

After suitable replacement, the expressions ofSi jkl are
the same as those derived by Tandon and Weng [26]. Ac-
cording to the Eshelby tensor,Si jkl is a non-dimensional
parameter. However, Leeet al. [34] have reported that
Si jkl is proportional to the reciprocal of shear modulus.
S3311 (= S3322) is not equal toS1133 (= S2233), but Lee
and co-workers [34] have treated the two quantities as
the same, that is,S3311= S1133.

Appendix II
Assume a function

M = 1

k2− 1
− k

(k2− 1)3/2
cosh−1(k)
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Show that ifk approaches unity, thenM = −1/3.
Proof:

M = lim
k−>1

{
1

k2− 1
− k

(k2− 1)3/2
cosh−1(k)

}

= lim
k−>1

{
1

k2− 1
− k

(k2− 1)3/2

× tanh−1

[
(k2− 1)1/2

k

]}

= lim
k−>1

{
1

k2− 1
− k

(k2− 1)3/2

[
(k2− 1)1/2

k

+ 1

3

(k2− 1)3/2

k3
+ . . . .

]}

= lim
k−>1

{
− 1

3k2
+ . . . .

}
= −1

3
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